indexado en
  • Abrir puerta J
  • Genamics JournalSeek
  • Claves Académicas
  • DiarioTOCs
  • InvestigaciónBiblia
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • cimago
  • Directorio de publicaciones periódicas de Ulrich
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • Publón
  • miar
  • Servicios de indexación científica (SIS)
  • pub europeo
  • Google Académico
Comparte esta página
Folleto de diario
Flyer image

Abstracto

Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships

Kazue Mizuno, Timur Zhiyentayev, Liyi Huang, Sarwat Khalil, Faria Nasim, George P Tegos, Hariprasad Gali, Ashlee Jahnke, Tim Wharton and Michael R Hamblin

Photosensitive dyes or photo sensitizers (PS) in combination with visible light and oxygen produce reactive oxygen species that kill cells in the process known as photodynamic therapy (PDT). Antimicrobial PDT employs PS that is selective for microbial cells and is a new treatment for infections. Most antimicrobial PS is based on tetrapyrrole or phenothiazinium structures that have been synthesized to carry quaternary cationic charges or basic amino groups. However we recently showed that cationic-substituted fullerene derivative were highly effective in killing a broad spectrum of microbial cells after illumination with white light. In the present report we compared a new group of synthetic fullerene derivatives that possessed either basic or quaternary amino groups as antimicrobial PS against Grampositive (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli) and fungi (Candida albicans). Quantitative structure-function relationships were derived with LogP and hydrophilic lipophilic balance parameters. Compounds with non-quaternary amino groups tended to form nanoaggregates in water and were only effective against S. aureus. The most important determinant of effectiveness was an increased number of quaternary cationic groups that were widely dispersed around the fullerene cage to minimize aggregation. S. aureus was most susceptible; E. coli was intermediate, while C. albicans was the most resistant species tested. The high effectiveness of antimicrobial PDT with quaternized fullerenes suggest they may have applications in treatment of superficial infections (for instance in wounds and burns) where light penetration into tissue is not problematic.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado