Xiaoyi Wang, Dongmei Li, Phil Hendry, Herbert Volk, Abdul Rashid, Keyu Liu, Manzur Ahmed, Se Gong, Wan Ata B Wan Daud and Tara D Sutherland
The increasing demand for petroleum is driving the development of technologies including MEOR (Microbial enhanced oil recovery)—the use of microbes within a reservoir to enhance oil recovery. In this study we initially determined that availablilty of suitable carbon sources was limiting microbial growth and metabolism of an oil reservoir microbial community. Subsequently we identified metabolic processes that are initiated after addition of nutrients that addressed this limitation. Four distinct metabolic pathways were stimulated: (i) fermentation of the added nutrient; (ii) methanogenises of the metabolites of fermentation; (iii) accumulation and decay of biomass; and (iv) oxidation/co-metabolism of petroleum. Biomass, when introduced as a nutrient, led to similar increases in live cell numbers in oil reservoir microcosms as addition of molasses. In addition to acting as a nutrient, disrupted microbial biomass led to formation of oil-water emulsions and significant lowering of the interfacial tension. These results suggest biomass manipulation can play an important role in MEOR.