indexado en
  • Acceso en Línea a la Investigación en Medio Ambiente (OARE)
  • Abrir puerta J
  • Genamics JournalSeek
  • DiarioTOCs
  • cimago
  • Directorio de publicaciones periódicas de Ulrich
  • Acceso a Investigación Global en Línea en Agricultura (AGORA)
  • Biblioteca de revistas electrónicas
  • Centro Internacional de Agricultura y Biociencias (CABI)
  • Búsqueda de referencia
  • Directorio de indexación de revistas de investigación (DRJI)
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • erudito
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • Publón
  • miar
  • Comisión de Becas Universitarias
  • pub europeo
  • Google Académico
Comparte esta página
Folleto de diario
Flyer image

Abstracto

Advanced Techniques for Morphometric Analysis in Fish

Mojekwu TO *,Anumudu CI

Information on the biology and population structure of any species is a prerequisite for developing management and conservation strategies. Morphometric characters of fish are the measurable characters common to all fishes. Some arbitrarily selected points on a fish body known as landmarks help the individual fish shape to be analyzed. A landmark is a point of correspondence on an object that matches between and within populations. Advanced techniques for morphometric analysis offers more efficient and powerful tools in identify differences between fish populations, detecting differences among groups and to differentiate between species of similar shape. Morphometric methods such as univariate comparisons, bivariate analyses of relative growth pattern and a series of multivariate methods have been developed and applied to discriminate stocks. The use of multivariate techniques such as principal components and discriminant analyses to quantify morphometric variables are also receiving increased attention in stock identification. Some of the advanced techniques developed for morphometric analysis in fish population are Truss network measurement, Image analysis- Univarite, Bivariate, and Multivariate, Principal Component Analysis (PCA).

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado