indexado en
  • Base de datos de revistas académicas
  • Abrir puerta J
  • Genamics JournalSeek
  • DiarioTOCs
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • cimago
  • Directorio de publicaciones periódicas de Ulrich
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Publón
  • miar
  • Comisión de Becas Universitarias
  • Fundación de Ginebra para la Educación e Investigación Médica
  • pub europeo
  • Google Académico
Comparte esta página

Abstracto

Insights of How Lung Microbiome can Contribute to COVID-19 Severity in Intensive Care Unit Patients

Fabíola Marques de Carvalho, Leandro Nascimento Lemos, Luciane Prioli Ciapina, Rennan Garcias Moreira, Alexandra Gerber, Ana Paula C. Guimarães, Tatiani Fereguetti, Virgínia Antunes de Andrade Zambelli, Renata Avila, Tailah Bernardo de Almeida, Jheimson da Silva Lima, Shana Priscila C. Barroso, Mauro Martins Teixeira, Renan Pedra Souza, Cynthia Chester Cardoso, Renato Santana Aguiar, Ana Tereza R. de Vasconcelos*

Objectives: Secondary bacterial and fungal infections are associated with respiratory viral infections and invasive mechanical ventilation. Microbiome influence on COVID-19 severity in patients admitted to intensive care units (ICU) remains poorly understood. This work described the lung microbiota of Brazilian COVID-19 patients and explored how microbial pathogens can contribute to Coronavirus disease 2019 clinical outcome.

Methods: Total DNA of bronchoalveolar lavage fluids from 21 Brazilian COVID-19 patients was extracted. All patients were positive RT-PCR and admitted to intensive care units in two Brazilian centers. For metagenomic analyses, sequenced reads were submitted to bioinformatic tools for taxonomic and functional inferences.

Results: We identified respiratory, nosocomial, and opportunistic pathogens as prevalent bacteria in the lung, suggesting a dysbiosis process (microbial imbalance) in ICU COVID-19 patients. Microbial functional analyses showed metabolic pathways associated with virulence repertoire, such as biofilm production, secreted toxins, capsular polysaccharides, and iron acquisition. Microbial pathogens and their virulence mechanisms were associated with host immunological responses, and a cellular model suggesting how bacterial species could participate in COVID-19 worsening was presented.

Conclusion: We explore how microbial species present in the lung could potentially modulate and aggravate the immunological processes of patients admitted to intensive care units, contributing to COVID-19 severity.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado