indexado en
  • Abrir puerta J
  • Genamics JournalSeek
  • Claves Académicas
  • DiarioTOCs
  • InvestigaciónBiblia
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • cimago
  • Directorio de publicaciones periódicas de Ulrich
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • Publón
  • miar
  • Servicios de indexación científica (SIS)
  • pub europeo
  • Google Académico
Comparte esta página
Folleto de diario
Flyer image

Abstracto

Structure of Micelles Calcium Didodecyl Sulfate: A SAXS Study

Priyadarshi Mahapatra, AS Abdul Rasheed, PS Goyal and Jayesh R Bellare

This paper reports the structure of micelles of Calcium Didodecyl Sulfate (CDS), Ca(DS)2 , as studied using Small Angle X-ray Scattering (SAXS). CDS is a dianionic surfactant consisting of two DS- tails attached to Ca++ divalent ion. There is considerable interest in understanding the structure (especially the outer shell of counter-ions) of micelles of CDS as unlike conventional surfactants (e.g. CTAB, SDS) where counter-ion is monovalent, CDS has a divalent counter-ion. SAXS is an ideal technique for obtaining information about the outer shell of the Ca(DS)2 micelle, as the constituents (S, Ca, O etc.) of the shell are strong X-ray scatterers. The SAXS measurements have been made on salt-free aqueous solutions of calcium didodecyl sulfate for surfactant concentrations of 0.5, 1.0, 2.5, and 20 weight % (or 8.8, 17.7, 44.92 and 438.01 mM/dm3 ) respectively. Single step indirect Fourier transformation method has been utilized to generate particle distance distribution function. It is found that micelles are prolate ellipsoidal in shape. The size parameters of the ellipsoidal micelles have been determined. Other relevant parameters like mean aggregation number and effective fractional charge has been determined by fitting an ellipsoidal shaped core-shell model to the Fourier transformed scattering data. It is seen that increase in surfactant concentration results in lowering of aggregation number, increase of shell thickness and lowering of total charge and probably lowering of water association.