indexado en
  • Abrir puerta J
  • Genamics JournalSeek
  • Claves Académicas
  • DiarioTOCs
  • InvestigaciónBiblia
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • cimago
  • Directorio de publicaciones periódicas de Ulrich
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • Publón
  • miar
  • Servicios de indexación científica (SIS)
  • pub europeo
  • Google Académico
Comparte esta página
Folleto de diario
Flyer image

Abstracto

The Application of Advanced Nanostructured Film in Electrosurgical Device: Anti-Sticking Behavior and Thermal Injury

Keng-Liang Ou and Han-Yi Cheng

Background: Minimally invasive surgery is performed using an endoscope and other instruments including the electrosurgical units. However, concerns including surgical smoke, tissue sticking, and thermal injury are remaining in electro surgery.

Aims: Accordingly, a newly developed electrosurgical electrode coating with hydrogenated Cu-incorporated diamond-like carbon (DLC-Cu) film is purposed to improve the instrument performance.

Methods: The morphologies of DLC-Cu surfaces were characterized using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In this study, lesions were made on the liver lobes of adult rats, using a monopolar electrosurgical unit equipped with untreated stainless steel electrodes or treated-electrodes. Animals were sacrificed for evaluations at 0, 3, 7, and 28 days post-operatively.

Results: Treated-electrodes generate less sticking tissues and adhesive blood cells. Thermography revealed the surgical temperature in liver tissue from the treated -electrode was significantly lower than the untreated-electrode. Total injury area of livers treated with treated-electrodes was significantly smaller than the untreated-electrodes treatment. Moreover, treated-electrodes caused a relatively smaller area of lateral thermal injury, a smaller area of fibrotic tissue, and a faster process of remodeling than the untreated-electrodes. Western blot analysis showed that rats treated with treated-electrode expressed lower levels of NF-κB, caspase-3, and MMP-9 than untreated-electrode. Immunofluorescence staining for caspase-3 revealed the untreated-electrode caused more serious injury.

Conclusions: This study reveals that the plating of electrodes with hydrogenated Cu-incorporated diamond-like carbon film is an efficient method for improving the performance of electrosurgical units. However, more tests must be carried out to confirm these promising findings in human patients.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado